Characterization of soil physical and hydraulic properties of TexMensonet monitoring sites

TEXAS A&M UNIVERSITY Soil & Crop Sciences

INTRODUCTION

- The TexMesonet is a statewide environmental monitoring network (Figure 1) designed for continuous measurement of atmospheric variables, soil moisture, and soil temperature.
- The goal of the network is to provide data to support applications such as precision agriculture, flood forecasting, and wildfire mitigation.
- However, the soil moisture data collected by the TexMesonet have yet to be used for these applications because the soil physical and hydraulic properties of the sites are unknown.
- The objective of this project is to quantify the soil physical and hydraulic properties for sites in the TexMesonet which are managed by the Texas Water Development Board.

The specific objectives are to:

- Characterize the soil physical properties including soil texture, bulk density, saturated hydraulic conductivity, and water contents at field capacity and permanent wilting point.
- Estimate the site- and depth-specific van Genuchten (1980) soil parameters: saturated water content (θ_s) and residual volumetric water content (θ_r), α , n, m and hydraulic conductivity function.

Figure 1: Current and future counties with TexMesonet monitoring sites.

Bismark Osei¹ and Briana M. Wyatt¹

¹Department of Soil and Crop Sciences, Texas A&M University

MATERIALS AND METHOD			
There are currently 84 TexMesonet sites across the state which are managed by the Texas Water Development Board.			
Two soil cores per site (5.1-cm diameter × 5.0-cm height) will be collected using a Giddings probe at depths of 5, 10, 20, and 50 cm. Figure 2: TexMesonet site in Colorado County.			
Parameters with their corresponding methods			
Bulk density	Core	Core method	
Particle size	Hydr 1994	Hydrometer method (Gavlak et al. 1994)	
Soil moisture content	Press Hopr	Pressure cell method (Dane and Hopmans, 2002)	
Saturated hydraulic conductivity	Perm	Permeameter	
• Site-specific soil hydraul van Genuchten model (B between volumetric wat $\frac{\theta - \theta_r}{\theta_s - \theta_r} =$	ic prop Eq. 1) t ter cor [1 + (perties will be estimated using the to predict the relationship tent and matric potential: $(-\alpha \Psi_m)^n]^{-m}$ (1)	
where $m = 1 - \frac{1}{n}$.			
Ψ_m is the matric potential (cm ³ cm ⁻³)	(kPa) <i>,</i> (heta is the volumetric water content	
, $ heta_r$ is the residual water content (cm ³ cm ⁻³), $ heta_s$ is the saturated			

$$\frac{\theta - \theta_r}{\theta_s - \theta_r} = [1 + (-\alpha)]$$

volumetric water content, α , n, and m are parameters.

MATERIALS AND METHODS (CONT.)

The hydraulic conductivity function is given by:

K(S

 K_{0} (cm/day) is a fitted matching point at saturation, L (-) is an empirical parameter, S_{e} (-) is the effective saturation.

EXPECTED RESULTS

The expected outcomes of this study are:

- to users and stakeholders.

IMPACT OF THE STUDY

Develop soil moisture-based drought indices. Improve wildfire prediction. Estimate potential groundwater recharge.

The funding of the project is provided by Texas Water Development Board.

$$S_e = K_0 S_e^L \left\{ 1 - \left[1 - S_e^{\frac{n}{n-1}}\right]^{1-\frac{1}{n}} \right\}^2$$
(2)

TEXAS A&M

RESEARCH

The development of a state-wide soil physical and hydraulic property database for TexMesonet sites.

2. To develop soil moisture maps to make data more accessible

The database that will be generated can be applied in order to:

Validate soil moisture data from remote sensing.

Plan of irrigation and drainage schemes.

Relate forage and crop yield to soil moisture.

ACKNOWLEDGEMENT