In This Issue:
GMO Report
Chillicothe Field Day
O.D. Butler Field Day
Run-off Prevention System
Comments from the Department Head
More....

Dr. Casey Reynolds and Nick Mckenna talk to 4-H Roundup participants about turfgrass science.
Rain has resulted in a very green Texas. Soil moisture is rapidly approaching a level to encourage field work that has been much delayed. We encourage extra caution as we approach long hours with heavy equipment and travel to make up for these delays.

A big Whoop! to all of the faculty who supported 4-H Roundup.

Dr. Amir Ibrahim and team hosted visitors from Tunisia as part of a joint project to develop greater collaboration. Reports indicate the team from Tunisia was very impressed and major focus points for future collaboration were achieved. Congratulations to the MEPS team for an outstanding symposium this spring.

Thanks to the team for keeping things running smoothly while Jeanne and I celebrated our 40th anniversary in Maui with the kids and grandkids. It was a great opportunity to reenergize. I was also able to make the southern department heads meeting in Gainesville. It was pleasant to compare notes with other departments in the region as all indications are that we are doing relatively well.

It seems as though we have several issues that have emerged with deferred maintenance. I encourage you to let Judy know when you have submitted a work order so we can track any issues regarding slow response. We have not yet had many hot days, but it appears the primary air conditioning system in HEEP is working.

Next week I will be at the National Plant Germplasm Coordinating Committee. I serve as the liaison from NAPB on this committee.

Thanks to those leading the search for our soil fertility position. We are moving forward in a negotiation phase. Requests are on file with administration for our other priority positions. We have a meeting with the provost and dean in the near future to go over our departmental review. Thanks to that review process we will soon have a clear path forward. Thanks as well to Jim Heilman and the curriculum committee for their work on our assessment program.

Thanks to Judy Young and all of you for so diligently working to get all the evaluations completed in a timely manner this year. I believe we were 100% complete by the deadline with current employees. Thanks for the team efforts to make sure our inventory was up to date. It is great to have our annual inventory effort behind us. I encourage each of you to consider surplusing things that have only collected dust except for inventory the past three years.

Have a great summer!
Dr. Joseph Awika has been selected to receive the American Association of Cereal Chemists International (AACC) Excellence in Teaching Award.

Awika is an Associate Professor in the Soil and Crop Sciences Department, specializing in food science and technology. His research focus is grain chemistry, processing and quality: identifying mechanisms by which secondary plant metabolites and minor grain constituents may be optimized to improve food quality.

Awika teaches several food science courses and is currently supervising three master’s students and three Ph.D candidates.

Originally from Kenya, Awika received his Bachelor of Science in Food Science from Egerton University in Njoro, Kenya in 1996. He earned his Ph.D. from TAMU in 2003 and went on to teach at Arkansas State University and the University of Missouri before returning to College Station in 2008.

Derrick Amoako is, in the words of Dr. Joseph Awika, “on fire.”

An interdisciplinary Ph.D. candidate in Food Science and Technology studying under Awika, Amoako recently received two scholarships from two different organizations.

He was awarded a AACC Foundation Fellowship from the American Association of Cereal Chemists International (AACC). This award is to encourage research in grain-based food science and technology. The award includes a scholarship and a travel award to attend the 2016 AACC Annual Meeting in Savannah, GA. Amoako has the opportunity to present his research at that meeting should he choose to do so.

He also received a Feeding Tomorrow Graduate Scholarship from the Institute of Food Technologists. This scholarship is awarded to a grad student based on scholastic achievements, leadership experience and devotion to the food science and technology profession.

Amoako’s research focuses on mechanisms to alter starch digestibility using tannins to improve nutrition and health.

“Starch is the primary dietary source of energy/calories in the human diet and it’s digestibility has important nutritional consequences,” Amoako stated. “Understanding how various food components (tannins) impact starch digestibility is highly relevant to food and nutrition security.”

Amoako is from Accra, Ghana, and received his Bachelor of Science in nutrition and food science from the University of Ghana in 2012. This summer he has an internship with PepsiCo in Plano, working with the Functional Team under the global R&D group.
Soil and Crop Sciences graduate student Wardah Mustahsan has been selected to attend the International Rice Research Institute's Research to Production course in Los Baños, Philippines, Aug. 8-26. Her trip will be fully funded by the National Science Foundation.

Wardah is working on her Master's in Plant Breeding under Dr. Michael Thomson with a focus on rice genetics. She received her Bachelor of Science in Biology from Xavier University in 2013.

The Research to Production course is designed to give young scientists (21-35 years old) a better understanding of the role rice plays in Asian countries. It highlights the impact of rice on global food security and the challenges faced by rice producers in impoverished regions.

“I have many positive expectations for this trip,” Wardah said. “I feel that the members of IRRI will provide a holistic approach to teaching the course. They will provide the foundation basics of rice plant breeding both in a lecture setting and in the lab.”

“I am looking forward to gathering more information about rice genomics, breeding techniques for various stress conditions (drought, salt, flooding and other environmental factors), and how rice plant breeders understand the role of rice culturally, socially and economically in the global community.”

According to IRRI's literature, the three-week course aims to “create a new generation of plant scientists that are well networked into the international community and understand the importance of innovative plant science in addressing global problems.”

These course goals fit well into Wardah's long term plans.

“I would like to see myself working for a research institute or facility that is heavily involved in rice improvement for all global communities, particularly impoverished communities,” Wardah stated.

During the three-week course, Wardah will hear presentations from many rice researchers and industry professionals, in addition to going into the paddies with local farmers to get hands-on rice production experience with local farmers.

Since its inception in 2007, more than 240 scientists, extension professionals and teachers from 40 different countries have attended the Research to Production course. The NSF sponsors ten graduate students each year.

For Wardah Mustahsan, from Metairie, LA, this will be the first trip to the Phillipines.
Forage producers face annual battle with weeds

By Adam Russell

It’s an annual battle to address range and pasture weeds, said a Texas A&M AgriLife Extension Service expert.

Cool-season weeds have fully matured, and warm-season weeds are emerging amid wet spring conditions and creating problems for some forage producers, said Dr. Vanessa Corriher-Olson, AgriLife Extension forage specialist, Overton.

The wet weather in East Texas and other parts of the state is also preventing producers from entering fields with equipment to fight unwanted plants, she said. Bermuda grass is starting to grow but recent cooler temperatures have slowed its progress in some areas and provided growth opportunity for weeds.

These weeds compete with forages like Bahiagrass and Bermuda grass for moisture and nutrients from fertilizer, she said. Their presence can also reduce forage quality. Some weeds are toxic to livestock.

Corriher-Olson said the best way to beat back weeds is to promote forage growth. It starts with the soil pH balance and fertilizing according to soil analysis and the needs of desired forages.

Herbicides are an effective option for weed control when applied correctly, she said. Identifying the weed is the most important consideration when applying herbicides.

Plant type determine the most effective control approach, she said. Determining if the weed is a perennial or annual plant and the most effective time to spray are critical to successful application.

“There’s a wide variety of herbicides for pastures and hay meadows,” she said. “It can be hard to make a decision. Once we’ve identified the plant we can find the best recommendations.”

The plant varieties in Texas are so vast, Corriher-Olson said, even knowledgeable forage producers have identification questions. She said photographs or fresh plant samples can help AgriLife Extension agents and specialists determine what landowners are dealing with.

Mowing can reduce the presence of unwanted plants, but it’s not the most economical or effective control method, she said. It takes several cuts throughout the year to control or eliminate weeds by mowing. Forages are also mowed down with each cutting.

Corriher-Olson said there are also several excellent websites, including online AgriLife Extension and Texas A&M AgriLife Research publications, and books that help identify weeds found in Texas. “Toxic Plants of Texas,” “Brush and Weeds of Texas Rangelands” and “Know Your Grasses” are all available on the AgriLife Bookstore website at www.agrilifebookstore.org.
COLLEGE STATION – Genetically engineered crops have not hurt the environment and are not adversely affecting human health, according to a comprehensive study coordinated by the National Academy of Sciences.

“Genetically Engineered Crops, Experiences and Prospects” is a newly released consensus report examining a range of questions and opinions about the economic, agronomic, health, safety or other effects of genetically engineered crops and food.

Dr. David Stelly, Texas A&M AgriLife Research plant breeder in the Texas A&M University soil and crop science department in College Station, was on the team of 20 scientists from universities and organizations across the U.S. and beyond.

The areas of study represented on the team were entomology, molecular biology and genomics, crop biotechnology, risk communication, food science, economics, toxicology, ecology, weed science, plant breeding, sociology, law, food safety and agronomy.

The breadth of assessment necessitated one of the largest National Academy of Sciences review committees ever assembled. Members heard from 80 topical speakers representing diverse and occasionally polarized perspectives, as well as extensive input by the public, Stelly said.

He said the report was written to provide unbiased assessments to the public and policymakers regarding varying claims and research about purported benefits, risks and apprehensions posed by genetically engineered crops and food.

The committee’s analysis of scientific literature and other published results was extensive, including more than 1,000 papers, Stelly said. The committee also included broader perspectives about genetically engineered crops, including economic, political and moral attitudes.

“While there has been a plethora of literature about ‘GMOs’ and GE crops, a need remained for a contemporary broad-scoped study to carefully examine the evidence on what exists now and seems likely in the future, given how quickly genetic engineering tools are improving,” he said.

“The study needed to look at the evidence in multiple contexts, because everyone’s viewpoint is very much contextually influenced, and those viewpoints affect how one assesses new information, or whether one even bothers to look at or assess it,” Stelly said. “Pre-existing highly polarized viewpoints tend to be further polarized by additional scientific data, even if incontrovertible,”

Important findings by the committee included “no persuasive evidence of adverse health effects directly attributable to consumption of foods derived from genetically engineered crops.” It also concluded “available evidence generally indicates favorable economic outcomes for producers of genetically engineered maize or corn, cotton and soybeans, although there is high heterogeneity.”

The review looked at over 20-plus years of genetically engineered crops, primarily herbicide-resistant and insect-resistant varieties of corn, soybeans and cotton, Stelly said.

“The prevalence of these two types of traits and a few major crops in global agriculture is an intriguing aspect of the GE world — the result of many factors but certainly including monetary and legal constraints. Only now are other types of GE traits and crops emerging in the marketplace,” he said.
Statistics show genetically engineered crops can already be found in more than 25 countries and on 12 percent of the world’s cropland. Produce includes those major crops of corn, soybeans and cotton, as well as papaya, squash, potatoes, apples and eggplant.

“Interestingly, in the right circumstances, small producers can benefit the most, but not in all circumstances,” Stelly said. “Corn, cotton and soybean are largely GE in the U.S., where the GE traits are valued by many producers for increased proficiency, flexibility, greater safety of crop production and a reduced ecological footprint. ”

A key message from the report is there is no longer a clear distinction between crop-improvement approaches. The scientists determined:

– New technologies in genetic engineering and conventional breeding are blurring the distinction between the two approaches. Each encompasses diverse methods and leads to diverse products.

– All technologies for improving plant genetics have the potential to change foods in ways that raise safety issues.

Based on current crops and modifications, reviewers determined genetic modifications for insect resistance have resulted in reduced yield loss, less insecticide application, greater insect biodiversity and some levels of resistance in target insects if management strategies were not followed. Herbicide-resistant crops have resulted in higher yields or flexibility in cropping, but some weed resistance has also evolved.

Stelly said the consensus is that all regulations concerning genetically engineered crops need to balance biosafety and consumer confidence with impacts on innovation and deployment of beneficial products.

“New genetic-engineering technologies, especially ‘gene-editing’ technologies, have already increased the precision of genetic engineering and prospective throughput, complexity and diversity, and this trend will undoubtedly continue,” he said. “Targets will most likely include resistance traits for a broader array of insect pests and diseases in more crops.”

However, Stelly said new traits and novel trait augmentations could have a big impact, such as increased efficiency in nutrient use, like nitrogen-use efficiency, improved composition and digestibility, reductions in natural toxins and carcinogens, and improved photosynthesis.

Improved drought stress resistance, for example, would allow for reduced water usage and improve yield stability across years – a major concern for producers worldwide, large or small, he said, adding many if not all of these would be relevant to Texas.

“In the end, we must balance public investment in diverse genetically engineered and non-genetically engineered approaches to address food security,” Stelly said.

He noted that while genetic engineering is likely to deliver larger numbers and more diverse traits, breeders and breeding programs are needed in either case, because the genetic variation, regardless of source, must be molded into new superior genetic combinations, and validated through extensive in-field, multi-year testing.

“We, as a committee, recommend consideration be given to the development of a tiered approach for assessing new genetic types as part of their approval process for GE and non-GE crops.

“The rationale was that ‘omics’ technologies could be used to develop relatively quick and inexpensive means to scan any alterations of potential concern,” Stelly said. “While imperfect, they would prospectively provide much more information than is currently available.”

The study was supported by the Burroughs Wellcome Fund, the Gordon and Betty Moore Foundation, the New Venture Fund and the U.S. Department of Agriculture and the National Academies of Sciences.

The complete 420-page report can be downloaded or purchased by going to http://bit.ly/25aFctB.

Dr. David Stelly, a Texas A&M AgriLife Research plant breeder in the Texas A&M University soil and crop science department in College Station, was one of 20 scientists chosen to participate in the National Academy of Sciences review.

(Texas A&M AgriLife Photo by Beth Ann Luedeker)
Texas A&M AgriLife Research is conducting several studies on canola in both the Rolling Plains and High Plains regions as interest in the crop continues to grow.

The canola plots were showcased recently at field days at both the AgriLife Research Chillicothe Station, south of Chillicothe in the Rolling Plains, and at the AgriLife Research Bush Farm, 600 Farm-to-Market Road 2381 north of Bushland in the Panhandle.

Dr. Clark Neely, Texas A&M AgriLife Extension Service small grains and oilseed specialist in College Station, said interest in canola is growing as wheat producers look for a rotational crop that allows the use of herbicides to clean up grassy weeds in their fields.

“There are not many options to control grassy weeds in wheat,” Neely said. “But we have Roundup-ready canola, as well as Clearfield, which offer producers the option to use Roundup and Beyond in their fields when they plant canola in the rotation. In addition, there are sulfonylurea and imidazolinon carryover tolerant varieties that can easily follow wheat.”

Dr. Paul DeLaune, AgriLife Research environmental soil scientist in Vernon, said he is working on several canola studies demonstrating the benefits of canola in a rotation. Crop rotations evaluated canola/wheat and sorghum/canola rotations.

“We know crop rotation is far superior to a monoculture system,” DeLaune said. “We see a nice benefit for wheat following canola. We’ve seen as much as a 10 to 15 percent increase in wheat production.”

In addition to variety plots, his studies are investigating planting dates, seeding rates, row spacing, tillage and also use of plant growth regulators, DeLaune said.

“Ideally, you want to get canola into the ground six weeks before the first freeze; in this area that’s around Sept. 20,” he said. “But some no-till producers have had problems with winter kill.”

DeLaune said they have experimented with plant growth regulators to suppress fall growth. The objective is to keep it from getting too big and further elevating the growth point above the ground, which makes it more prone to winter kill.

“We’ve done two years of studies looking at early planting dates – Sept. 8, Sept. 15 and Sept. 23 – applying growth regulators at the six-leaf stage,” he said. “What we’ve seen is no real effect of applying those chemicals on canola and winter kill.

“What we’ve found is planting date is more important. Planting at the optimal time is still providing the best yields.”

DeLaune said they planted some canola as late as Oct. 31, although the insurance cutoff is Oct. 10.

“For the last two years, we’ve been able to get away with that,” he said. “But the later you plant into October, the higher risk you have for winter kill. Ideally, you need to have it in the four- to six-leaf stage going into the first freeze.”

Dr. Jourdan Bell, the AgriLife Extension agronomist in Amarillo who is evaluating the winter canola production

Wheat Producers Eye Canola in Crop Rotation

Dr. Clark Neely, Texas A&M AgriLife Extension Service state small grains and oilseeds specialist, is working with producers across the state interested in canola.

Rolling Plains Spring Field Day participants view canola plots at the Texas A&M AgriLife Research Chillicothe Station.
near Bushland, agreed the planting date will be key to successful production in the Panhandle region.

Bell’s plots include 12 different varieties at two different planting dates – Sept. 17 and Oct. 2 – on 30-inch rows at a seeding rate of 4 pounds per acre and a depth of three-quarters of an inch.

“Planting date is very critical for optimal crop establishment in the High Plains due to the potential for losing the crop to winter freeze,” she said.

Bell said at this time both planting dates look good at the Bushland site. The plots were not irrigated, but received about 9 inches of precipitation. Currently, plots are in pod fill and will be harvested mid-June.

Dr. Emi Kimura, AgriLife Extension agronomist in Vernon, said soil fertility plays a role in stand establishment. The pH level is important, because an acidic soil can cause a very scattered stand and inhibit root growth. Producers should also monitor sulfur and nitrate levels.

“At planting time, you need to make sure you do not apply too much nitrogen in the seed furrow, because the acidic condition will reduce your stand,” Kimura said.

DeLaune said in the row spacing seeding rate study near Chillicothe, they planted 10-inch and 20-inch spaced rows with a drill at 3 pounds and 5 pounds per acre, with the standard recommendation being 5 pounds per acre. The 30-inch spaced rows were seeded at 1.5 pounds and 2 pounds per acre, which included strip-tilling to manage residue in the seed row.

“When you think about seed cost, it’s about $6 per pound, so that can add up when you start ranging the seeding rates,” he said.

Two popular methods of harvesting canola are swathing when 60 percent of the seed has gone through a color change or direct harvesting, which can have a larger risk due to leaving seed in the field for a longer period, DeLaune said. However, area producers use both approaches and there is not a consensus on the best harvest method from year to year.

He said according to the guidebooks, determining when to harvest is best done by looking at the pods on the main stem of a plant.

“Look at the pods beginning at the bottom of the main stem and ideally when you see a 50 to 60 percent seed color change in the pods on that main stem, then it is time to swath or desiccate it for harvest,” DeLaune said.

Another consideration is choosing open pollinated or hybrid varieties, Neely said.

“There is a large difference in seed size,” he said. “The hybrid seed is half again as big as open pollinated seed, but can be more expensive, so you have to weigh your options on seed price. The hybrids are nice because the bigger seed might offer more risk management, providing more energy and hybrid vigor when planting into less-than-ideal conditions.”

Neely said winter hardiness is another trait of concern as wild temperature swings in the fall make that an important characteristic.

“Planting date drastically affects that, but variety selection also plays a role,” he said.

For a complete look at Texas canola variety trials and information, go to http://varietytesting.tamu.edu/oilseed/

To watch a video from the field day Click Here
Stiles Farm Field Day to feature Drone Technology and Sugarcane Aphid Update

By Blair Fannin

THRALL – The future of drone technology in Texas Blacklands agriculture will be one of the featured programs at the June 21 Stiles Farm Field Day.

The 53rd annual field day will also feature an update on the sugarcane aphid, plus programs on nitrogen application and soil compaction, horn fly control on livestock, pesticide laws and regulation update, and an aquatic weed management program.

The Stiles Farm is located at 5700 Farm-to-Market Road 1063, near the intersection of U.S. Highway 79, 1 mile east of Thrall.

“‘This year’s field day will feature a demonstration on drone technology and its potential future in Blackland production agriculture,’ said Ryan Collett, Stiles Farm manager and Texas A&M AgriLife Extension Service specialist.

“With wet conditions delaying side-dress applications across the region, we will also have a presentation on utilizing ‘rescue nitrogen,’ as well as a discussion of the impact of soil compaction. Overall, we have topics of interest for everyone.

“We think attendees will go home with new ideas and strategies they can incorporate into their own operations. I do want to thank our area agribusiness for sponsoring the meal and in particular the Williamson County Farm Bureau for paying the registration fee for producers wanting to obtain CEU credits.”

The field day is hosted by AgriLife Extension in coordination with the Stiles Farm Foundation. Registration is free and begins at 7:30 a.m. The program begins at 8:25 a.m. and will feature the following sessions:

– Future of Drones in the Texas Blacklands, Dr. Dale Cope, associate professor of engineering, Texas A&M; Bob Avant, program director of Texas A&M AgriLife Research corporate relations; Dr. Alex Thomasson, AgriLife Research agricultural engineer, all of College Station.
– Rescue Nitrogen: Is It Too Little Too Late? and Sugarcane Aphid Update, Dr. Ronnie Schnell, AgriLife Extension agronomist.
– Soil Compaction, What We Can’t See Can Cost Us, Dr. Jake Mowrer, AgriLife Extension soil fertility specialist, College Station.
– Horn Fly Control/Vet Gun Demonstration, Dr. Sonja Swiger, AgriLife Extension entomologist, Stephenville.
– Pesticide Record Keeping and Disposal, Worker Protection Standards Update, Dr. Mark Matocha, AgriLife Extension agricultural and environmental safety specialist, College Station.

The noon lunch program will be at the Knights of Columbus Hall in Taylor and will feature the presentation of the 2016 Agriculturalist of the Year and Agribusiness Person of the Year awards sponsored by the Williamson County Farm Bureau. Stiles Farm Foundation scholarships will also be presented.

A keynote address titled “Managing Challenges, Creating Opportunities” will be given by Dr. Doug Steele, AgriLife Extension director, College Station.

The afternoon program will begin at 1:30 p.m. Aquatic Weed Management will be presented by Dr. Michael Masser, department head for wildlife and fisheries sciences at Texas A&M, College Station.

The morning session will award one continuing education unit in integrated pest management and one in laws and regulations for Texas Department of Agriculture pesticide applicator license holders. The afternoon session will award one general continuing education credit.

The Stiles Farm Foundation was established by the Stiles family at Thrall in Williamson County. According to the foundation, J.V. and H.A. Stiles wanted to commemorate their father, James E. Stiles, and the land he worked. They also wanted to help neighboring farmers and others throughout the Central Texas Blacklands region learn new farming practices. In 1961, the Stiles Farm Foundation was established and became part of the Texas A&M University System. The farm is used by AgriLife Extension and AgriLife Research, which conduct field experiments and use the facility as a teaching platform.
Soil Colleague now a Fellow of the Australian Academy of Science

Professor Alexander Broadfoot McBratney, a long-time colleague of the Texas A&M Soil and Crop Sciences was one of twenty-one researchers to be elected as Fellows to the Australian Academy of Science.

According to the citation on the Academy’s website, McBratney is a world-leading soil scientist who conceived and developed pedometrics, digital soil mapping and soil security, radically strengthening the knowledge base of soil science. He established new theory and empirical models of soil variation in landscapes and developed their applications, for example, in precision agriculture.

His contributions have revolutionised the availability of soil information and led to improved agricultural practices with reduced environmental impacts and enhanced security of the world’s soil.

McBratney was a visiting scientist at TAMU last spring, and is still a frequent visitor to the department.

Dr. Cristine Morgan and the hydropedology team at Texas A&M are currently submitting two publications on projects completed at here in collaboration with McBratney. According to Morgan, they are looking forward to more fruitful collaborations.

“The hydropedology group is pleased about Alex becoming a Fellow of Australian Academy of Science. His contributions to soil science in general, and pedometrics and soil security specifically, are well noted,” Morgan stated. “Everyone in the group enjoys stimulating conversation with Alex regarding science ideas, statistical analysis, and soil science in general.”

See more at: https://youtu.be/ZS2Iya30zIs
To view Professor McBratney’s presentation during Science at the Shine Dome 2016 click here

Aggie Scientists invent High Tech Runoff Prevention System

Since settlers first began moving to Texas, water has played a key role. Ranches and towns were established based on the availability of water. As the population increases, water plays an increasingly important role.

The Texas Legislature recognized the need to protect and conserve the state's water and initiated steps to address future water needs. One of these steps was to charge Texas A&M AgriLife Research, Texas A&M Engineering Experiment Station and Texas A&M AgriLife Extension with the task of addressing water-use efficiency.

In response, an interdisciplinary team of Texas A&M scientists and engineers, co-led by Dr. Ben Wherley of the Soil and Crop Sciences Department and Dr. Jorge Alvarado of the Department of Engineering Technology and Industrial Distribution, spent two years creating a sensor-based system designed to optimize water usage.

The landscape runoff mitigation system (LIRMS) they developed is expected to be available to the public within the next two years.

A full story about the system, written by Leslie Lee, is included in the Spring 2016 edition of the Texas Water Resources Institute magazine. It is available on-line at: http://twri.tamu.edu/publications/txh2o/spring-2016/off-and-running/
For more information contact: Dr. Ben Wherley - b-wherley@tamu.edu; Dr. Richard White - rh-white@tamu.edu or Dr. Casey Reynolds - casey.reynolds@tamu.edu
There was forage – and lots of it – showcased at the recent O.D. Butler Field Day held at Camp Cooley Ranch in Franklin. Hundreds of Brazos Valley beef cattle producers attended the field day to learn more about controlling weeds to boost forage yields, and viewed the latest in hay harvesting equipment.

The field day was hosted by Circle X Land and Cattle Co. and sponsored by the Texas A&M AgriLife Extension Service and the Brazos Area Hay Producers Association.

After the noon meal, a speaker panel featured area hay producers. One important topic discussed was feral hog control and repairing damage to hay fields.

“We disc, repair and replant,” said Chris Duewall, Circle X Land Cattle Co. operations manager. “The biggest challenge is keeping the weeds out. We typically disc, get the ground smooth and sometimes have to haul in soil with a dump truck if the hogs have really rooted deep in areas.”

Ervin Homman, a Robertson County hay producer, said when customers come looking to purchase hay, they are looking for good quality hay at a fair price.

“Most importantly, they are looking at quality,” he said. “If they can afford it, they will pay to get quality. We make sure customers are getting a good price for their hay as well as quality.”

Homman said one thing to keep in mind is if the price is cheap, “you better examine it.”

Experts on the panel advised producers to get their hay tested so they know what the protein content is.

Storage was another topic discussed. Experts on the panel recommended storing hay in a barn.

“We store about a year’s worth of hay in a three-sided barn with the front open,” Duewall said. “This allows air to get through it. We also believe in testing both our soil and hay so we know exactly what we are feeding. We raise a lot of heifers and we need to know the exact nutrition to feed them.”

Earlier in the day, Dr. Paul Baumann, AgriLife Extension state weed specialist in College Station, presented a 26-year review of demonstration work at the Butler field day. Baumann, who was presenting at his final field day event before retiring June 1 after 26 years with AgriLife Extension, highlighted 15 major Texas A&M AgriLife Research and AgriLife Extension works done in the area affecting regional forage producers.

“For one, you can’t fertilize your way out of a weed problem,” Baumann said. “There’s a lot of benefit to killing weeds and following up with a good fertilization program. The take-home is that those weeds are picking your pocket. They are taking away moisture you wish you had when it comes July or August.”

Baumann also highlighted work done in controlling Bahia grass in pasture. Use of Ally or Cimarron herbicides have provided good results followed by fertilization to encourage coastal Bermuda grass to come back in areas “when you’ve been wiped out by Bahia grass.”

The war on grassbur was also discussed. Baumann said initial research used Round-up, but the herbicide also caused Bermuda grass injury. The most effective herbicide treatment found through several studies is Pastora. He recommended 2.5 ounces to 100 gallons of water with spot applications.
Faculty from Texas A&M and Institution de la Recherche et de l’Enseignement Superieur Agricoles (IRESA) in Tunisia met in College Station May 30 through June 6 for the second joint sustainable soil management workshop. The first workshop was held in Tunisia back in January of this year.

The conference included presentations by several Soil and Crop Department faculty members and Tunisian faculty on a variety of agricultural topics in addition to soil management.

Participants took several road trips to TAMU AgriLife Research Centers, the Stiles Farm, the Farm Services fields in the Brazos bottom and a bit of shopping in San Marcos and Houston.

The combined faculty from TAMU and IRESA

Texas High Plains

Above: Dr. Nithya Rajan talks about irrigation water management in the Texas high plains.

To the right: Dr. Clark Neely explains small grain extension and wheat variety testing.

Water quality training June 21 will focus on Lake Conroe and area watersheds

A Texas Watershed Steward workshop on water quality and water management related to Lake Conroe and other area watersheds will be held from 1-5 p.m. June 21 at the San Jacinto River Authority main office located at 1577 Dam Site Road in Conroe.

The free workshop will be presented by the Texas A&M AgriLife Extension Service and the Texas State Soil and Water Conservation Board in cooperation with the river authority. It is open to anyone interested in improving water quality in the region.

Participants are encouraged to preregister at the Texas Watershed Steward website at http://tws.tamu.edu.

For more information contact:
Michael Kuitu at (979) 862-4457 or mkuitu@tamu.edu
Texas Rice Crop Prospects get Soggy Under Excessive Water

By: Kathleen Phillips

Record flooding in Texas this year may even oversaturate the water-loving rice crop and cause a 10-15 percent per acre decrease in the 2016 yield, officials estimate.

“The overall planted acreage is up by about 28 percent, which is good,” said Dr. Ted Wilson, center director at the Texas A&M AgriLife Research and Extension Center-Beaumont. “Those who managed to get into fields to plant before the rains began to delay things – as long as their fields weren’t flooded – they are doing OK. But we’ve had some areas that have received a tremendous amount of rain, so I don’t doubt that the yields are probably going to be down.”

Wilson and his team in Beaumont work with the rice industry to produce a weekly Rice Crop Survey for the four-region, 21-county rice-producing area of Texas.

The optimum planting time for the Texas rice crop is mid-March through mid-April, he said. If planted on time, rice farmers cut a first crop around in August and September and then allow the plants to grow again for a second, or ratoon, crop typically in November or December, he explained.

“We’re not on schedule and it’s all spread out, depending on where the rain and floods have been,” Wilson said. “The latest I’ve seen the commercial rice crop planted has been mid-June. I don’t know how much that will be the case this year, but the later it is planted, the less time there is to grow the second crop.”

That’s where the drop in overall yields will be determined, he said. The ratoon crop acreage is normally 50-85 percent of the first crop, depending on the county, giving producers the much-needed added income.

“The high rainfall will definitely reduce this year’s ratoon crop production,” Wilson added.

The most recent weekly rice crop survey released June 3 indicated 165,482 acres to be planted this year. About 75 percent of the state crop had been planted by the mid-April optimum time. The remaining 25 percent inched toward completion in the ensuing seven weeks, and planting in six of the rice producing counties still was not complete.

Beyond the unusual rainfall and flooding this season, Wilson pointed to two other factors normally impacting Texas rice: the release of water from the Lower Colorado River Authority to farmers for use in agriculture and the glut of rice on the world market due to extensive subsidies by the Thai government.

The first, Wilson said, led to farmers deciding to plant more acres. But the second factor – the oversupply from Thailand – suppressed prices to the point that farmers had to put a pencil to what price would be “required to make a reasonable living.” That’s why a weather-related reduction in yield could cause a huge dent at the farm level.

He said ultimately Texas production may show an increase in total production – given the higher percent planted – but the yield per acre on individual growers will be where the loss is felt.

Wilson said the rains and floods also are impacting the Beaumont center’s experimental rice crop planting. The station’s researchers annually plant numerous plots to study everything from potential new varieties to insects and diseases that can target rice. Delayed planting means some scientific studies could be postponed for a year, he said.

The U.S. Department of Agriculture is expected to release its rice crop estimates in about a month, and Wilson said those numbers may be more precise since they are tied to farm program signup.

“If we have really great weather for the rest of the year, it could change the outcome,” Wilson said, “but a 10-15 percent yield reduction is a reasonable estimate at this point.”

To follow the Texas rice crop, see https://beaumont.tamu.edu/CropSurvey/.

Contact: Dr. Ted Wilson (409) 752-2741, lt-wilson@aesrg.tamu.edu
4-H members from throughout the state of Texas gathered in College Station June 5-9 for the State 4-H Roundup, an invitational competition and learning opportunity. About 50 different competitions and events, including a soil judging contest and turf workshop, take place during the week.

Dr. Casey Reynolds and Nick McKenna, Asst. Manager of the A&M athletic fields, conducted the turfgrass science workshop.

The three-hour workshop kicked off at Olsen Field, where Reynolds and McKenna discussed a variety of subjects, from soil structure to photosynthesis, showing how each affects field management.

“I know you think there is nothing to taking care of this [Olsen] field, you just have to mow the grass, throw out a little fertilizer and make sure it is watered,” McKenna said to the students. “But there is actually a lot of science that goes into it. I am expected to be a specialist in soil chemistry, soil physics, plant biology and physiology, turfgrass science and more.”

The workshop then moved to the turfgrass field lab on F&B Road where there are multiple research studies being conducted.

“It is always exciting to introduce young people to the turfgrass industry,” stated Reynolds. “It’s a career that merges plant and soil sciences with art. It’s also cool to have a golf course, football stadium or baseball field for an office!”

Reynolds and McKenna show 4-H members a sample of the soil beneath the grass on Olsen Field.
June

5-8 53rd Annual Meeting of the Clay Minerals Society, Atlanta, Georgia
15 - Soil Critique Meeting - Lubbock
 contact: Katie Lewis - Katie.Lewis@ag.tamu.edu
16 - Faculty Meeting - 12:30 p.m. Heep 440
17 - Groundbreaking of The Gardens outdoor teaching center - TAMU
21 - Stiles Farm Field Day - Thrall Texas
21 - Watershed Steward Workshop - Conroe
 contact: Michael Kuitu - mkuitu@tamu.edu

July

17-19 - Texas Turfgrass Summer Conference, Hyatt Lost Pines Resort, Bastrop
23 - Texas Seed Trade Assn. Annual Convention, Frisco, Tx

August

3 - Wheat Workers Meeting - College Station, TX
4 - Small Grains Workers Meeting, College Station, TX
15-18 - National Association of Plant Breeders Annual Meeting - Raleigh, NC

September

6 - Promotion and Tenure Meeting